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1 Introduction

The Schwinger effect of pair creation in the presence of an electric field is represented by

a probability given by the formula [1]

W = TVd−1
2j + 1

(2π)d−1

∞
∑

k=1

(−1)(2j+1)(k+1)

(

eE

k

)
d
2

e
−πkM2

|eE| (1.1)

where E is the electric field and e, j,M are the charge, spin and mass of the pair created

particles, and d is the number of uncompact spacetime dimensions.

The phenomenon has been shown to hold in open superstring theory [2]. In this case,

there is no gravity at tree level and the uniform electric field with flat spacetime geometry

is a consistent background of the theory. In d uncompact dimensions, one finds a result

which at weak fields approaches the Schwinger formula (1.1) for the infinite collection of

particles of the open superstring spectrum.

An important question is whether the phenomenon persists in the presence of gravity,

where the back reaction to electric field configurations can play an important role. There

are no static uniform electromagnetic field configurations in gravity. The basic reason is

that electromagnetic flux lines attract each other and tend to cluster around some central

region. Examples of axially symmetric, but non-uniform magnetic field configurations in

closed (bosonic and super) string theory have been constructed and investigated in [3, 4].
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In particular, there is a two-parameter (b, b̃) class of models given by [3, 4]

ds2 = −dx2
0 + dr2 +

r2

1 + b̃2r2

(

dϕ+ (b+ b̃)dy
)(

dϕ+ (b− b̃)dy
)

+dy2 + dx2
1 + · · · + dx2

D−4 ,

e−2(φ−φ0) = 1 + b̃2r2 , B2 = b̃
r2

1 + b̃2r2
dϕ ∧ dy , (1.2)

Here y is a periodic coordinate, y = y + 2πR, D = 10 for type II superstring and D = 26

for closed bosonic string theory. More generally, this background solves the equations of

the action

SD =

∫

dDx
√
G e−2φ

(

R+ 4(∂µφ)2 − 1

12
(Hµνρ)

2

)

(1.3)

in any spacetime dimensions.

Dimensional reduction in the y direction gives two magnetic fields of different U(1)’s,

proportional to b and b̃, associated with gyϕ and Byϕ, respectively. T-duality exchanges

the parameters b and b̃. Setting the parameter b̃ to zero, one finds the Kaluza-Klein

(KK) Melvin solution found in [5] and subsequently investigated in [6] in the context of

gravitational field theories. The background (1.2) is an exact solution of (super)string

theory to all α′ orders and the corresponding string conformal sigma model can be solved

exactly [3, 4]. In particular, the full physical string spectrum can be obtained in terms of

creation and annihilation operators, much like in the free string case.

As pointed out in [3], and investigated in [7–10] for the model with b̃ = 0, electric field

configurations can be obtained from (1.2) by a Wick rotation in the coordinates x0 → ixD−3

and ϕ→ −it, so that t now plays the role of time. By setting the parameter b̃ to zero and

changing b → iE one finds the electric version of the Kaluza-Klein Melvin model, which

we shall call the E-model

E : ds2 = dr2 − r2(dt − Edy)2 + dy2 + dxidxi , i = 1, . . . ,D − 3 , (1.4)

with constant dilaton and vanishing B2-field. The space is locally flat, but it has non-trivial

identifications.

The T-dual solution, that we shall call Ẽ-model, is obtained from (1.2) by setting b = 0

and changing b̃→ iẼ,

Ẽ : ds2 = dr2 − r2

1 − Ẽ2r2
dt2 +

dy2

1 − Ẽ2r2
+ dxidxi ,

e−2(φ−φ0) = 1 − Ẽ2r2 , B2 = Ẽ
r2

1 − Ẽ2r2
dt ∧ dy , (1.5)

The geometry is singular at r = 1/Ẽ. Nonetheless, the string model is regular, as fol-

lows from the fact that T-duality gives an equivalent conformal field theory and the E-

model (1.4) is obviously regular.

String states are characterized by their (integer) winding number m and KK momen-

tum n in the compact direction y as well as by quantum numbers representing internal
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excitations. The T-duality that maps the E-model to the Ẽ-model exchanges n and m,

so that a given string state of winding and KK momentum charges (m,n) behaves in the

E-model in exactly the same way as a string state with charges (n,m) (changing, at the

same time, R → α′/R). In any of the two models, the presence of either charge, m or n

produces a non-trivial interaction with the electric field.

The geometry (1.4) was investigated in the context of General Relativity in [10], where

no Schwinger pair production for KK particles was found (though it was found some par-

ticle creation of different origin). The interpretation of this fact was that the back reaction

of geometry prevents the electrostatic potential from overcoming the rest mass of the KK

particles, preventing the tunneling that would otherwise give rise to the Schwinger effect.

An interesting question is whether this is a model-dependent result or we should expect

that gravitational back reaction will always prevent the standard Schwinger phenomenon

to take place.

The present results clarify this point. In consistency with [10], we will show that

in the E-model indeed there cannot be any Schwinger pair production of KK particles.

However, we find that there is Schwinger pair production for winding string states. Such

states cannot be investigated within the context of field theory, but one can consider the

Ẽ-model, where these winding states become KK particles. Our results imply that in

General Relativity coupled to a dilaton and an antisymmetric tensor B2 as in (1.3) there

is Schwinger pair production of KK particles in the background (1.5), as we shall discuss

below. In this case we recall that the electric field arises from the Bty component.

This paper is organized as follows.

In section 2 we review the Schwinger effect for charged scalar particles, first in the

more familiar case of an electric field in Minkowski spacetime [1] (see [11–13] for more

recent discussions); then for an electric field in Rindler spacetime [14].

In section 3 we compute the pair creation rate for a charged scalar field in the Ẽ-

model (1.5). We find that the probability for pair creation is given by

W =
T Vd−2

(2π)d−1|Ẽ|

∞
∑

k=1

(−1)k+1

k

(

2|qẼ|
k

)
d−1
2

e
−

πkM2
0

2|qẼ| erf(Y
√
k) , (1.6)

Y ≡

√

π|qẼ|
2Ẽ2

, (1.7)

where erf(z) is the standard error function and q = n/R is the Kaluza-Klein charge of the

state. M0 is the mass in the higher D dimensional spacetime and the mass in d ≡ D−1 di-

mensions isM2 = M2
0 +q2. W exhibits a number of interesting physical features that we dis-

cuss.

In section 4 we discuss string theory in the background (1.4). In section 4.1, we first

reproduce the formula of section 3 for (unexcited) winding string states. Then, in section

4.2, we comment on some issues to derive a formula for general excited winding string states.

– 3 –
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2 Charged scalar field

The solution (1.5) represents an electric field on a space which approaches a Rindler space

at small r. Before considering this space, it is useful to recall some features of the dynamics

of charged particles coupled to an electric field in Minkowski and in Rindler spacetime.

2.1 Electric field in Minkowski spacetime

To study Schwinger pair creation in flat Minkowski spacetime, ds2 = −dt2 + dz2 + dx2
i ,

i = 1, . . . , d − 2, we choose a gauge At = Ez and consider the equation for a massive

charged scalar particle minimally coupled to the electromagnetic field,

(

− ∂2
z − ∂2

i + (∂t − ieEz)2 +M2
)

Φ = 0 (2.1)

Setting Φ = eipixi+iωtχ(z) one gets the Schrödinger equation for a particle in an inverted

harmonic potential V = −(eEz − ω)2,

[

− ∂2
z − (eEz − ω)2 + p2

i +M2
]

χ(z) = 0 , (2.2)

There are many different derivations of the Schwinger rate (1.1). In this first example we

will compute the pair production rate from the partition function for the magnetic model

obtained by analytic continuation, t = ix, B = iE, ω = −ip, xd−2 = −ix0, pd−2 = ip0.

This gives a harmonic oscillator with Hamiltonian

H = −∂2
z + (eBz − p)2 + p2

j − p2
0 +M2 , j = 1, . . . , d− 3 (2.3)

and eigenvalues (we take eB > 0)

Hn = 2eB(n+
1

2
) + p2

j − p2
0 +M2 , n = 0, 1, 2, . . . (2.4)

This leads to a one-loop vacuum energy

Z =

∫ ∞

0

ds

s
Tr
[

e−πsH
]

(2.5)

The trace contains a summation over the momenta, which is converted into an integral by

the rule
∑

pj ,p0,p

→ Vd−1

(2π)d−1

∫

dd−3pj dp0 dp (2.6)

The integral over dp gives a δ(0) which is interpreted as a time volume factor (recall that

−ip is the energy in the electric configuration). This is just what is needed to get a finite

probability per unit time; since dp has the same dimensions as eBdt, the integral over dp

gives a factor eBT . Thus

Z =
TVd−1

(2π)d−1

∫ ∞

0

ds

s
d
2

eB

sinh(πeBs)
e−πM2s (2.7)

In doing the analytic continuation back to the original electric field configuration, an infi-

nite series of poles arise from sin(πeEs) = 0, i.e. at s = k/(eE), k = 1, 2, . . .. which give
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rise to an imaginary part, given by π times the residue of the poles (the integration contour

passes by the right of the poles). This represents the pair production probability We get

Wscalar = 2ImZ =
TVd−1

(2π)d−1

∞
∑

k=1

(−1)k+1

( |eE|
k

)
d
2

e
−πkM2

|eE| (2.8)

in agreement with (1.1) with j = 0. This is equivalent to the Lorentzian approach based

on the Schwinger representation of the Feynman propagator by means of the kernel.

Another equivalent way to compute the pair production rate is to choose the gauge

where the gauge potential is A3 = −Ex0. The equation of motion is then similar, changing

z by x0, but now we can interpret pair production in terms of a scattering process, where

an “in” wave hits the inverted harmonic potential and as a result there is a combination of

negative and positive frequency waves at late times, where the coefficients are determined

by a Bogoliubov transformation. The coefficient of the negative frequency component gives

the pair creation probability for a given frequency. The similar calculation in the static

gauge will be carried out in section 3.

2.2 Electric field in Rindler space

The case of Rindler space is obtained as follows. We first consider a charged scalar particle

moving in a uniform magnetic field in flat spacetime, but now we use radial coordinates

and choose the gauge where Aϕ = Br2/2 (i.e. Ax = −By/2, Ay = Bx/2). The equation

is now given by

(

1

r
∂rr∂r +

1

r2
(

∂ϕ − i

2
eBr2

)2
+ ∂2

j − ∂2
0 −M2

)

Φ = 0 , (2.9)

where j = 1, . . . , d− 3. Setting Φ = eip0x0+ilϕ+ipjxjχ(r)/
√
r, we obtain

[

− ∂2
r + V (r)

]

χ(r) = 0 , V (r) =

(

1

2
eBr − l

r

)2

− 1

4r2
+M2 + p2

j − p2
0 (2.10)

This represents a two-dimensional oscillator. The eigenvalues are

H = eB(lL + lR + 1) − eB(lL − lR) +M2 + p2
j − p2

0 ,

= eB(2lR + 1) +M2 + p2
j − p2

0 , lL, lR = 0, 1, 2, . . . (2.11)

where the quantum numbers are related to the Landau level l and to the radial quantum

number kr by

l = lL − lR , lL + lR = 2kr + |l| , kr = 0, 1, 2, . . . (2.12)

One can then compute the partition function and analytically continue back to the electric

field configuration, which is now obtained by analytic continuation B = iE, ϕ = −it, x0 =

ixd−2 and l = iω, giving the Rindler space

ds2 = dr2 − r2dt2 + dx2
i , i = 1, . . . , d− 2 .

– 5 –
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Although the starting “uniform magnetic field” configuration is the same as in section 2.1,

the analytic continuation is different: now it is the polar angle what becomes the time coor-

dinate, giving as a result a Rindler space, with a Rindler horizon located at r = 0. As shown

in [14], in Rindler space one again obtains the Schwinger pair creation rate, modulo a term

that scales as the area and represents Unruh particle production from the Rindler horizon.

The rate can be obtained by a Bogoliubov transformation between creation/annihilation

operators associated with in and out vacua at r = 0 and r = ∞. Generalizing the result

of [14] to d dimensions, the formula for the rate (re-obtained in the next section) is given by

W =
T Vd−2

(2π)d−1

∫

dd−2p

∫ 0

−∞
dω log

1 + e−
π(M2+p2

i )

eE

1 + e−
π(M2+p2

i
)

eE e2πω

= W1 −W2 (2.13)

where

W1 =
T Vd−2

(2π)d−1

∫

dd−2p

∫ 0

−∞
dω log

(

1 + e−
π(M2+p2

i )

eE

)

W2 =
T Vd−2

(2π)d−1

∫

dd−2p

∫ 0

−∞
dω log

(

1 + e−
π(M2+p2

i )

eE e2πω
)

(2.14)

We assume eE > 0. Expanding the log and performing the integrals, one finds

W1 =
VRVd−2

(2π)d−1

∞
∑

k=1

(−1)k+1

(

eE

k

)
d
2

e−
πkM2

eE (2.15)

We used the relation [14] T dω = eEdVR, where VR is the volume in the two-dimensional

Rindler spacetime. This can be regularized by two limiting hyperbolas at r1 and r2. Then

one can write VR = T (r2−r1), where T is a mean proper time, T = T r̄, r̄ = (r1+r2)/2 rep-

resenting a typical distance from the Rindler horizon (typical values are given by the turning

points of classical trajectories in the WKB approximation). Thus W1 represents the stan-

dard Schwinger probability for pair creation proportional to the spacetime volume Vd−2VR.

The second contribution is a surface contribution, which has to be subtracted to the

dominant contribution (2.15) proportional to the volume. The integral over ω is now

convergent, giving the result

W2 =
T Vd−2

(2π)d

∫

dd−2p
∞
∑

k=1

(−1)k+1

k2
e−

πk(M2+p2
i )

eE (2.16)

Integrating over pi, we find

W2 =
T Vd−2

(2π)d

∞
∑

k=1

(−1)k+1

k2

(

eE

k

)
d
2
−1

e−
πkM2

eE

= −T Vd−2

(2π)d
(

eE
)

d
2
−1

Li1+ d
2

(

− e−
πM2

eE

)

(2.17)

This second contribution is due to the presence of the Rindler horizon [14]. In the absence of

electric fields, this term plays the role of canceling the particle production in the Boulware

– 6 –
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vacuum state. When the electric field is turned on, one term becomes proportional to the

volume and the surface term becomes significant only in the vicinity of the horizon, where

it is getting most of the contribution.

3 Electric field in a gravitational theory

Thus far we have considered electric fields in fixed (Minkowski or Rindler) backgrounds, and

neglected the back reaction of the geometry due to the energy density provided by the elec-

tric field. We will now incorporate this back reaction exactly by using the string model (1.5).

We shall first consider a massless scalar supergravity mode Φ in the background (1.2)

This satisfies the equation1

∂µ(e−2φ
√
GGµν∂ν)Φ = 0 . (3.1)

Using eq. (1.2) we obtain

[

− ∂2
0 + ∂2

k +
1

r
∂r(r∂r) +

1

r2
(1 + b2r2)(1 + b̃2r2)∂2

ϕ

+(1 + b̃2r2)∂2
y − 2b(1 + b̃2r2)∂ϕ∂y

]

Φ = 0 , (3.2)

with k = 1, . . . ,D − 4. Write

Φ = eip0x0+ipkxk+iqy+ilϕ 1√
r
η(r) , q =

n

R
, n ∈ Z . (3.3)

Then eq. (3.2) becomes

[

− ∂2
r + V (r)

]

η(r) = 0 , V (r) =
l2 − 1

4

r2
+ ν2r2 + µ2 , (3.4)

where

ν = b̃(q − bl) , µ2 = p2
k − p2

0 + (q − bl)2 + b̃2l2 .

This is a two-dimensional oscillator with frequency ν. We thus obtain essentially the same

differential equation as in the Rindler case, (2.10), but with different parameters.

This mode Φ has (Kaluza-Klein) momentum charge but vanishing winding number

(winding states cannot be described by local fields). Upon analytic continuation to the elec-

tric field configuration one finds an inverted harmonic oscillator potential −|ν|2r2, which is

again the origin of the instability that leads to Schwinger pair production. However, note

that this term is absent in the E-model (1.4), where Ẽ = 0, since ν = 0 in this case. This im-

plies that no Schwinger pair production of Kaluza-Klein particles should be expected in this

model. This explains the results of [10], which considered KK particles in the E-model (1.4).

We now return to the magnetic variables and set b = 0. Therefore we will examine

pair production of Kaluza-Klein particles in the Ẽ-model. Then we get

ν = qb̃ , µ2 = p2
k − p2

0 +M2 + b̃2l2 , M = |q| .
1The same equation was considered in [15] in the study of the mass spectrum of the magnetic model.

– 7 –
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Since we started with the equation (3.1) for a massless scalar fluctuation, the invariant mass

of the state in the lower dimensional theory in the absence of an electric field coincides

with the electric charge of the field, M = |q|. Below we shall also consider massive states.

Now the Hamiltonian eigenvalues are

H = 2qb̃(lL + lR + 1) + b̃2l2 +M2 + p2
k − p2

0 , lL, lR = 0, 1, 2, . . . , (3.5)

M2 ≡ q2 =
n2

R2
, l = lL − lR, qb̃ > 0 (3.6)

Comparing with the previous Minkowski and Rindler cases, the Hamiltonian now con-

tains a new term b̃2l2. The origin of this term is the b̃2r2 term in the metric component

gϕϕ = (1 + b̃2r2)/r2. This term b̃2l2 is produced by the back reaction of the magnetic field

in the geometry.

3.1 Calculation of the pair-production rate

Consider now the analytic continuation to the electric field configuration, b̃ → iẼ and

l → iω, where ω is the Rindler energy. The calculation of vacuum persistence rate is

formally the same as in [14], since the equation is the same with the substitutions

eE → 2qẼ , M2 →M2 + Ẽ2ω2 − 2qẼω (3.7)

It will be seen below that the new term Ẽ2ω2 has a dramatic effect in the pair creation

process. As mentioned above, this term originates from gravitational back reaction, whereas

the second term is to cancel the term −eBl → 2qẼω in eq. (2.10), since this term does not

appear in the differential equation (3.4). The absence of such term 2qẼω in (3.4) seems to

be due to the Kaluza-Klein nature of the interaction.

The problem can be viewed as the standard quantum mechanical problem of scattering

against a barrier (see e.g. [11–13]). The pair creation rate will be related to the reflection

coefficient. The starting point is the differential equation satisfied by the wave function

ψ(r) = η(r)/
√
r:

ψ′′ +
1

r
ψ′ +

(

q2Ẽ2 r2 +
ω2

r2
− µ2

)

ψ = 0 (3.8)

with

µ2 = M2 + p2
i + ω2Ẽ2 , M2 = q2 , i = 1, . . . ,D − 3 (3.9)

(whereas µ2 = M2 + p2
i + eEω for the previous Rindler case). It is important to note that,

despite the classical singularity of the background at r = 1/Ẽ, the wave equation is regular

at this point and can be extrapolated beyond this radius.

It is convenient to introduce new variables (throughout we assume qE > 0)

z = qẼ r2 , ψ = z
i
2
ω e−i z

2 g(z) . (3.10)

Then g(z) satisfies the differential equation

z g′′(z) + (1 + iω − iz) g′(z) − α g(z) = 0 , (3.11)

– 8 –
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with

α ≡ µ2

4qẼ
− ω

2
+
i

2
. (3.12)

The solution is given in terms of the confluent hypergeometric function

g(z) = A z−iω
1F1(−iα− iω, 1 − iω; iz) +B 1F1(−iα, 1 + iω; iz) . (3.13)

Near z = 0, ψ(z) behaves as

ψ(z) ∼= A z−
i
2
ω +B z

i
2
ω , z ∼ 0 . (3.14)

Defining z = e2x, one can write the z = 0 behavior in terms of incoming and outgoing

ordinary plane waves,

eiωtψ(x) ∼= A eiω(t−x) +B eiω(t+x) , x→ −∞ . (3.15)

At z → ∞, ψ has the following behavior

ψ(z) ∼= C ziα+ i
2
ω e−i z

2 +D z−iα−1− i
2
ωei

z
2 , z ≫ 1 , (3.16)

where

C = e
πα
2

(

B Γ(1 + iω)

Γ(1 + iω + iα)
+
A e

πω
2 Γ(1 − iω)

Γ(1 + iα)

)

D = e
π(α−i)

2

(

B e
πω
2 Γ(1 + iω)

Γ(−iα)
+
A Γ(1 − iω)

Γ(−iα− iω)

)

(3.17)

Therefore

eiωtψ(z) ∼= 1√
z
eiωt

(

C z
iµ2

4qẼ e−
iz
2 +D z

− iµ2

4qẼ e
iz
2

)

. (3.18)

We must demand that there is no wave coming from infinity. For positive frequency modes,

this is the condition D ≡ 0. This gives

∣

∣

∣

∣

B

A

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

e−
πω
2 Γ(−iα)

Γ(−iα− iω)

∣

∣

∣

∣

∣

2

=
1 + e

−
π(M2+p2

i )

2qẼ e
−π(ω2Ẽ2

2qẼ
+ω)

1 + e
−

π(M2+p2
i
)

2qẼ e
−π(ω2Ẽ2

2qẼ
−ω)

< 1 (3.19)

For negative frequency, the condition is C ≡ 0, and we get an equivalent result:

∣

∣

∣

∣

B

A

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

e
πω
2 Γ(1 + iω + iα)

Γ(1 + iα)

∣

∣

∣

∣

∣

2

=
1 + e

−
π(M2+p2

i )

2qẼ e
−π(ω2Ẽ2

2qẼ
−ω)

1 + e
−

π(M2+p2
i
)

2qẼ e
−π(ω2Ẽ2

2qẼ
+ω)

< 1 (3.20)

The Rindler space, as well as the present spacetime (1.5), can be divided in four quadrants,

left, right, future and past. As shown in [14], the sum 2
∑

ω>0 +2
∑

ω<0 gives the total

volume. Quantization in the right quadrant corresponds to keeping only ω < 0. If we were

to integrate over both regions, ω > 0 and ω < 0, we would get an extra factor of 2.
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Equation (3.20) gives the reflection probability of a given mode, which is equivalent to

the probability for vacuum persistence or vacuum to vacuum transition,

∣

∣〈0, out
∣

∣ 0, in〉
∣

∣

2
=

∣

∣

∣

∣

B

A

∣

∣

∣

∣

2

= exp
(

− 2V T ImLeff

)

(3.21)

where Leff is the effective Lagrangian. The pair-production probability is then2

W = 2V T ImLeff = − log

∣

∣

∣

∣

B

A

∣

∣

∣

∣

2

(3.22)

Integrating over the momenta and over the frequency, the full pair creation probability is

given by

W =
T Vd−2

(2π)d−1

∫

dd−2p

∫ 0

−∞
dω log

1 + e
−

π(M2+p2
i )

2qẼ e
−π(ω2Ẽ2

2qẼ
+ω)

1 + e
−

π(M2+p2
i
)

2qẼ e
−π(ω2Ẽ2

2qẼ
−ω)

(3.23)

where d = D−1 is the number of uncompact spacetime dimensions. This exactly reproduces

the result (2.14) of the Rindler model upon the formal substitution (3.7), as expected.

For the present, gravitational case, the physical picture now involves important dif-

ferences, having to do with the presence of the factor e
−πω2Ẽ2

2qẼ , induced by a gravitational

correction ∆M2 = ω2E2 to the mass squared M2 = q2 = n2/R2 of the Kaluza-Klein

particle. Expanding the logarithm and integrating over pi, we now find

W = W1 −W2 (3.24)

with

W1 =
T Vd−2

(2π)d−1

∞
∑

k=1

(−1)k+1

2qẼ

(

2qẼ

k

)
d
2

e
−πkM2

2qẼ

∫ 0

−∞
dω e

−πk(ω2Ẽ2

2qẼ
+ω)

,

W2 =
T Vd−2

(2π)d−1

∞
∑

k=1

(−1)k+1

2qẼ

(

2qẼ

k

)
d
2

e
−πkM2

2qẼ

∫ 0

−∞
dω e

−πk(ω2Ẽ2

2qẼ
−ω)

. (3.25)

Integrating over ω, we obtain

W1 =
T Vd−2

2(2π)d−1Ẽ

∞
∑

k=1

(−1)k+1

k

(

2qẼ

k

)
d−1
2

e
−πk(M2−q2)

2qẼ
(

1 + erf(Y
√
k)
)

,

W2 =
T Vd−2

2(2π)d−1Ẽ

∞
∑

k=1

(−1)k+1

k

(

2qẼ

k

)
d−1
2

e
−πk(M2−q2)

2qẼ
(

1 − erf(Y
√
k)
)

, (3.26)

Y ≡

√

πqẼ

2Ẽ2
,

2Note that W ≡ 2V T ImLeff has the interpretation of pair-production probability only to leading order

in the semiclassical approximation, while eq. (3.21) is an exact relation (for a discussion see [16]). We thank

S. Gavrilov for emphasizing this point.
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where erf(z) is the standard error function. Remarkably, the integrals over ω are conver-

gent: there is no infinite volume factor coming from the radial coordinate. Both W1 and

W2 are proportional to T Vd−2, just like the surface term W2 in the Rindler case of section

2.2. Near the horizon T ∼ T/r̄, where as in the Rindler case T is proper time and r̄ is a

characteristic distance, so the pair production rate W/T goes roughly like 1/r̄, becoming

more important in the vicinity of the horizon.

Since in the present case M2 = q2, there is an exact cancellation of two exponential

factors appearing in W1 and W2. Therefore

W1 =
T Vd−2

2(2π)d−1Ẽ

∞
∑

k=1

(−1)k+1

k

(

2qẼ

k

)
d−1
2
(

1 + erf(Y
√
k)
)

, (3.27)

W2 =
T Vd−2

2(2π)d−1Ẽ

∞
∑

k=1

(−1)k+1

k

(

2qẼ

k

)
d−1
2
(

1 − erf(Y
√
k)
)

. (3.28)

Now consider particles with M2 > q2. Our starting point is a scalar field with action

S =

∫

dDx
√
G e−2φ

(

Gµν∂µΦ∂νΦ +M2
0 Φ2

)

. (3.29)

The equation of motion is given by

∂µ(e−2φ
√
GGµν∂ν)Φ =

√
Ge−2φ M2

0 Φ . (3.30)

For the background (1.2), the differential equation is the same as (3.2) with a term M2
0 Φ

on the right hand side. The subsequent equations are the same with the substitution of M2

by M2 ≡ M2
0 + q2. Thus, proceeding in the same way as above, the general pair creation

rate is then

W =
T Vd−2

(2π)d−1Ẽ

∞
∑

k=1

(−1)k+1

k

(

2qẼ

k

)
d−1
2

e
−

πkM2
0

2qẼ erf(Y
√
k) (3.31)

This is the main result of this paper.

3.2 General properties

The sums over k are convergent for both W1 and W2. This is seen from the behavior of

the error function erf(z): it is monotonically increasing with a linear behavior near z ∼ 0

and tending to 1 at z ≫ 1. The asymptotic expansion of the error function is given by

√
π ez

2(

1 − erf(z)
)

=

∞
∑

n=0

(−1)n

2nz2n+1
(2n− 1)!! (3.32)

Therefore, for any fixed electric field and k ≫ 1, we can substitute erf(Y
√
k) → 1 and the

series (3.31) is readily seen to be convergent for the cases of interest, viz. d ≥ 2 (including

the case M0 = 0, eqs. (3.27), (3.28)).
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For weak electric fields, Y is large, and we find
(

1 + erf(Y
√
k)
) ∼= 2 +O

(

e−kY 2)

(

1 − erf(Y
√
k)
) ∼= 1√

πk Y
e−

πkqẼ

2Ẽ2 (3.33)

In this limit W2 becomes negligible. The dominant contribution to the rate is

W ∼= W1
∼= T Vd−2

(2π)d−1Ẽ

∞
∑

k=1

(−1)k+1

k

(

2qẼ

k

)
d−1
2

e
−πk(M2−q2)

2qẼ (3.34)

Thus, at weak fields, the probability for pair creation for particles with M > |q| has the

same structure as in the Schwinger formula (1.1). More precisely, one has a relation of the

form W(d)
grav(M2

0 ) = const. 1
2qẼ2

W(d+1)
schw (M2

0 ).

Interestingly, for the case M = |q|, the rate is not exponentially suppressed. We obtain

W ∼= T Vd−2

(2π)d−1Ẽ

∞
∑

k=1

(−1)k+1

k

(

2qẼ

k

)
d−1
2

∼= T Vd−2

(2π)d−1Ẽ
c0 (2qẼ)

d−1
2 , c0 = (1 − 2

1−d
2 )ζ

(

d

2
+

1

2

)

(3.35)

This seems to be related to the fact that such state is massless in the original higher

dimensional geometry.

Now let us examine the behavior of the pair creation rate at strong electric fields. In

this limit, Y is small. The argument of the error function is small for k ≪ k0 ∼ O(E).

Since the series is convergent, terms with k > k0 will give a subleading contribution. For

the terms with k ≪ k0 that provide the leading contribution, one has

erf(Y
√
k) =

2√
π
Y
√
k +O(Y 3) ∼=

√

2kqẼ

Ẽ2
(3.36)

Therefore we find

W ∼= T Vd−2

(2π)d−1Ẽ

∞
∑

k=1

(−1)k+1

k

(

2qẼ

k

)
d−1
2

√

2kqẼ

Ẽ2

∼= T Vd−2

(2π)d−1Ẽ2
c′0 (2qẼ)

d
2 , c′0 = (1 − 21− d

2 )ζ

(

d

2

)

, d 6= 2 , (3.37)

and c′0 = log(2) for d = 2. Note that this is the leading behavior also for particles with

M > |q|. In the particularly interesting case of d = 4 the rate goes to a constant in the

strong field limit:

Wd=4

∣

∣

∣

∣

Ẽ=∞

= T V2
q2

24π
. (3.38)

Comparing the weak and strong field behaviors of M = |q| particles, for weak fields

we have W ∼ E
d−3
2 whereas for strong fields W ∼ E

d−4
2 . Therefore, for these particles, the

strong field behavior in d dimensions is the same as the weak field behavior in d′ = d− 1.

Summarizing, the behavior of W for particles with M = |q| is as follows.
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• For d = 2 W is divergent as Ẽ → 0 (see (3.35)) and goes to zero like 1/Ẽ as Ẽ → ∞.

The divergence at zero field may look puzzling, since for weak fields, gravitational

back reaction is small and one would expect to recover results similar to those of the

model of section 2.2, which is regular as E → 0, even for particles with M = 0. This

will be clarified in the next section.

• For d = 3, W has a finite, non-vanishing value at Ẽ = 0, given by W = T V1 q/24.

As Ẽ is increased, the rate decreases monotonically and, as Ẽ → ∞, it goes to zero

like 1/
√

Ẽ .

• For d = 4, W is monotonically increasing, beginning from 0 at Ẽ = 0 and approaching

a constant T V2 q
2/(24π) as Ẽ → ∞.

• For d > 4, W is monotonically increasing, beginning from 0 at Ẽ = 0 and going to

infinity as Ẽ → ∞.

For particles with M > |q|, the leading behavior at Ẽ = ∞ is the same as that of

particles with M = |q|. The weak field behavior, given in eq. (3.34), is quite different,

instead. As Ẽ → 0, W vanishes exponentially as exp(−πM2
0 /(2qE)) in all dimensions. In

particular, this shows that for d = 2, 3, the rate has a maximum at some finite value of the

electric field (since for these values of d, W vanishes also at Ẽ = ∞).

3.3 Discussion

To connect with the Rindler case of section 2.2, we have to consider a situation where the

gravitational correction ∆M2 = ω2Ẽ2 can be neglected. In particular, it should be much

smaller than the mass squared M2 = M2
0 + q2, which is the case for modes with frequency

ω2 ≪M2/Ẽ2. Therefore we shall come back to eq. (3.23) and integrate over ω with a cutoff

at some ω2
0 ≪M2/Ẽ2. Expanding the log and integrating over pi, we have (see eq. (3.25))

W =
T Vd−2

(2π)d−1

∞
∑

k=1

(−1)k+1

2qE

(

2qẼ

k

)
d
2 ∫ 0

−|ω0|
dω e

−πkM2

2qẼ e
−πkω2Ẽ2

2qẼ
(

e−πkω − eπkω
)

(3.39)

Define ǫ ≡ ω0Ẽ/M . Then for ω ∼ ω0 the exponent in (3.39) is3

− πkM2

2qẼ
− πkω2Ẽ2

2qẼ
± πkω ∼ −πkM

2

2qẼ

(

1 + ǫ2 ± 2q

M
ǫ

)

(3.40)

The gravitational back reaction term, proportional to ǫ2, can be neglected provided ǫ≪ 1

and ǫ≪ q/M , the latter being in general a stronger condition since M ≥ q. This requires

|ω0| ≪ q/Ẽ. In this limit we have

W ∼= T Vd−2

(2π)d−1

∞
∑

k=1

(−1)k+1

2qE

(

2qẼ

k

)
d
2 ∫ 0

−|ω0|
dω e

−πkM2

2qẼ
(

e−πkω − eπkω
)

∼= 4T Vd−2

(2π)d

∞
∑

k=1

(−1)k+1

k2

(

2qẼ

k

)
d−2
2

e
−πkM2

2qẼ
(

cosh(πkω0) − 1
)

(3.41)

3Here we assume both q > 0 and Ẽ > 0. The cases of q < 0 and/or Ẽ < 0 are obtained by replacing q

and Ẽ by |q| and |Ẽ| in W.
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Note that for these modes with |ω| < |ω0| it is M2, rather than M2 − q2, what appears in

the exponent.

In the Rindler case (2.13), restricting the integrations to the same modes with |ω| <
|ω0| ≪M2/eE, one obtains

W =
T Vd−2

(2π)d−1

∞
∑

k=1

(−1)k+1

2qE

(

2qẼ

k

)
d
2 ∫ 0

−|ω0|
dω e

−πkM2

2qẼ
(

1 − e2πkω
)

(3.42)

In general, this is different from (3.41), as expected, since the models are different. Never-

theless, it is interesting that it gives the same result as (3.41) when the integral is restricted

to low energy modes, ω0 ≪ 1, i.e. the probabilities agree precisely in the regime where the

rate is significant. To see this, we note that, because of the exponential factor, W in (3.41)

is very small unless M2

qẼ
< O(1). Since ω ≪ q

Ẽ
≤ M2

qẼ
, this condition implies ω0 ≪ 1, i.e. low-

frequency modes. In this case we can assume kω0 ≪ 1 and expand the cosh(πkω0).
4 We find

W =
πT Vd−2

(2π)d−1

∞
∑

k=1

(−1)k+1

(

2qẼ

k

)
d−2
2

e
−πkM2

2qẼ ω2
0 , (3.43)

which exactly agrees with (3.42) in the same limit.

The formula (3.41) also clarifies the apparent puzzle mentioned above concerning the

singular behavior of eq. (3.35) for d = 2 at zero Ẽ. This divergence originates from

modes with large ω, for which the gravitational back reaction term ω2Ẽ2 is important. In

restricting the integration to modes for which the gravitational back reaction is small, we

find (3.41) which has a regular zero field limit in any dimensions, as expected.

In the present case it is not clear how to disentangle the Unruh effect from the

Schwinger process, since there is no infinite radial volume factor. The Unruh effect should

be significant near the horizon, whereas typically the Schwinger effect appears in the region

where the electric field has a non-vanishing value, giving a rate typically proportional to

the volume of this region. We recall that the geometry (1.5) of the present model is non-

trivial. The pair creation process arises as the net result of this complicated combination

of Rindler horizon with gauge fields and back reaction. It is possible that it makes no sense

to attempt to separate Unruh and Schwinger effects at any value of the electric field.

4 Bosonic string model

The partition function for the two-parameter (b, b̃) magnetic model (1.2) in bosonic string

theory was found in [3]. The models with (b, 0) and (0, b̃), being related by T-duality, have

identical partition function with the exchange of R → α′/R. Here we will set b̃ = 0 and

4Since the series is convergent, large values of k with k > O(1/ω0) give subleading contributions.
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use units where α′ = 1. One gets

Z = c1

∫

F

d2τ

τ13
2

e4πτ2 |f(e2iπτ )|−48
∑

(w′,m)6=(0,0)

exp

(

− πR2

τ2
|w′ − τm|2

)

× e
−

π(χ−χ̄)2

2τ2
1

∣

∣ sin(πχ)
∣

∣

2

∞
∏

r=1

∣

∣(1 − e2πirτ )
∣

∣

4

∣

∣(1 − e2πi(rτ+χ))(1 − e2πi(rτ−χ))
∣

∣

2 (4.1)

where

χ = bR(w′ − τm) , χ̄ = bR(w′ − τ̄m) , b > 0 . (4.2)

f(e2iπτ ) =

∞
∏

r=1

(1 − e2irπτ ) , c1 =
VD−3R

4(2π)D−3
, D = 26 . (4.3)

Here F denotes as usual the fundamental domain of SL(2, Z) defined by F = {|τ1| ≤
1/2, |τ |2 ≥ 1} in the upper half-plane τ2 > 0. The partition function (4.1) has a divergent

zero field limit corresponding to the area of the plane (x1, x2) ≡ (r, ϕ). Alternatively, one

could project out the factor coming from the integral of the constant modes of x1, x2 (this

prescription was adopted in [3]). This leads to (4.1) with an additional factor
∣

∣χ
∣

∣

2
/τ2. In

both cases the partition function is modular invariant.

Before discussing some features of the general structure of this partition function, it is

useful to study it in the particle limit and compare with the results of the previous section.

In the T-dual language that we are studying, with b̃ = 0 and b 6= 0, this Kaluza-Klein

particle corresponds to a winding state.

4.1 Schwinger effect for winding string states

In order to obtain the partition function for the winding state from (4.1), the first step is

to drop the factors |f(e2iπτ )| and the factors in the product from r = 1 to ∞ associated

with string excitations. Next, by a Poisson resummation in w′, i.e. by using the formula

∑

w′

F (w′) =
∑

n

∫ ∞

−∞
dµ e2πinµF (µ) (4.4)

we go to the Hamiltonian representation where the physical states are exhibited explicitly.

We are interested in states with m 6= 0 and n = 0. Also, in the field theory limit, the

integral over the fundamental domain region is to be extended to the full strip |τ1| ≤ 1
2 ,

τ2 > 0. By a change of integration variable, x = µ−mτ1, the integration over τ1 is trivial

(equal to 1) and we finally obtain (s ≡ τ2)

Zparticle =2c1

∫ ∞

0

ds

s13

∫ ∞

−∞
dx e−

πR2x2

s

∞
∑

m=1

e−πs(R2m2−2b2R2m2−4) 1
∣

∣ sin(πbR(x− ims))
∣

∣

2

(4.5)

The terms −2b2R2m2 − 4 in the exponent come from normal ordering of the Hamiltonian,

including all string oscillators [3]. Therefore they will be dropped in what follows, since

they do not arise in the particle theory (these terms are absent in the supersymmetric

theory, see [4] and below).
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To make contact with the spectrum (3.5), we have to expand the sine function. We get

Zparticle = 8c1

∫ ∞

0

ds

s13

∫ ∞

−∞
dx e−

πR2x2

s

∞
∑

m=1

e−πsR2m2
∞
∑

lL,lR=0

e−2πsmbR(lL+lR+1)e2πixbR(lL−lR)

(4.6)

Integrating over x, we find

Zparticle =
8c1
R

∞
∑

m=1

∫ ∞

0

ds

s25/2

∞
∑

lL,lR=0

e−πs(R2m2+b2(lL−lR)2)e−2πsmbR(lL+lR+1) (4.7)

This is what one would find from a Hamiltonian

H = 2mbR(lL + lR + 1) +R2m2 + b2(lL − lR)2 + p2
µ, µ = 0, . . . ,D − 4 , D = 26 .

Changing b→ b̃, R→ 1/R and m→ n, this is exactly the Hamiltonian (3.5).

Recalling

l = lL − lR , lL + lR = 2kr + |l| , kr = 0, 1, 2, . . . ., (4.8)

we write
∞
∑

lL,lR=0

=

∞
∑

l=0

∞
∑

kr=0

+

−1
∑

l=−∞

∞
∑

kr=1

(4.9)

Then we can write Zparticle = Z+ + Z− with

Z+ =
8c1
R

∞
∑

m=1

∞
∑

l=0

∞
∑

kr=0

∫ ∞

0

ds

s25/2
e−πs(R2m2+b2l2)e−2πsmbR(2kr+l+1)

Z− =
8c1
R

∞
∑

m=1

−1
∑

l=−∞

∞
∑

kr=1

∫ ∞

0

ds

s25/2
e−πs(R2m2+b2l2)e−2πsmbR(2kr−l+1) (4.10)

Summing over kr, we find

Z+ =
4c1
R

∞
∑

m=1

∞
∑

l=0

∫ ∞

0

ds

s25/2
e−πs(R2m2+b2l2)e−2πsmbRl 1

sinh(2πsmbR)

Z− =
4c1
R

∞
∑

m=1

−1
∑

l=−∞

∫ ∞

0

ds

s25/2
e−πs(R2m2+b2l2)e2πsmbRl 1

sinh(2πsmbR)
(4.11)

Now consider the analytic continuation to the Lorentzian electric field configuration. This

requires an additional prescription which is not supplied by the Euclidean magnetic par-

tition function. In section 3 we have seen that, in going to the Lorentzian electric field

configuration b → iE, at the same time we have to change l → iω, and ω is a continuous

variable representing the Rindler energy of a given mode. One has to be careful in the

Wick rotation l → iω, so we will proceed in two steps. We first replace l by a continuous

variable ℓ. We have

Z+ =
T
2π

4c1
R

∞
∑

m=1

∫ ∞

0
dℓ

∫ ∞

0

ds

s25/2
e−πs(R2m2+b2ℓ2)e−2πsmbRℓ 1

sinh(2πsmbR)

Z− =
T
2π

4c1
R

∞
∑

m=1

∫ 0

−∞
dℓ

∫ ∞

0

ds

s25/2
e−πs(R2m2+b2ℓ2)e2πsmbRℓ 1

sinh(2πsmbR)
(4.12)
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We have used the same normalization as before for the density of states. The Wick rotation

ℓ → iω, for both regions of integrations ℓ > 0 and ℓ < 0 must be done to the negative

imaginary axes for ω, since, as discussed in the quantum field theory treatment, the neg-

ative frequency modes are those contributing to the rate in the quantization in the right

quadrant. Starting with clockwise oriented contours, there will be a relative sign between

Z+ and Z− contributions because in one case one has to reverse the sense of integration of

ω. The result is

Z+ =
2T c1
πR

∞
∑

m=1

∫ 0

−∞
dω

∫ ∞

0

ds

s25/2
e−πs(R2m2+E2ω2)e2πsmERω 1

sin(2πsmER)

Z− = −2T c1
πR

∞
∑

m=1

∫ 0

−∞
dω

∫ ∞

0

ds

s25/2
e−πs(R2m2+E2ω2)e−2πsmERω 1

sin(2πsmER)
(4.13)

The pair creation rate is equal to 2Im(Zparticle). The imaginary part arises from the poles of

1/ sin(2πsmER). As dictated by the definition of the Feynman propagator, the integration

contour passes by the right of the poles, and the imaginary part is then given by π times

the residue at the poles,

s0 =
k

2mER
, Ress0

1

sin(2πsmER)
=

(−1)k

2πmER
. (4.14)

Thus we find

Z+ =
T Vd−2

(2π)d−1

∞
∑

m=1

∞
∑

k=1

∫ 0

−∞
dω

(−1)k

2mER

(

2mER

k

)
25
2

e−
πk

2mER
(M2+ω2E2)eπkω

Z− = − T Vd−2

(2π)d−1

∞
∑

m=1

∞
∑

k=1

∫ 0

−∞
dω

(−1)k

2mER

(

2mER

k

)
25
2

e−
πk

2mER
(M2+ω2E2)e−πkω (4.15)

with M = mR and d = D−1 = 25. This exactly reproduces the result (3.25) found directly

from the differential equation in the previous section (recall the T-dual dictionary: E → Ẽ,

m → n and R→ 1/R). The integral over ω can now be performed with identical results.

4.2 Comments on the extension to general string states

We now comment on the computation of the pair production rate for excited winding string

states. In general, one expects that they should be pair produced since they are electrically

charged as long as they have non-vanishing winding number. In section 4.1 we have seen

that obtaining the electric model from the magnetic model by analytic continuation involves

a number of subtleties. In particular, the orbital angular momentum l becomes a continuous

variable representing the energy of the modes. Finding the correct prescription for the com-

plete partition function involves many new issues. Here we outline some aspects of the cal-

culation. We start with (4.1) and perform Poisson resummation as in (4.4) to put the mag-

netic model in a suitable form for analytic continuation. Expand each of the factors in (4.1),

1

1 − e2πi(rτ±χ)
=

∞
∑

N±
r =0

e2πiN±
r (rτ±χ) , χ = bR(x− iτ2m) , (4.16)
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with x = µ−mτ1. We obtain

Z = c1
∑

states

dstate

∫

F

d2τ

τ13
2

e2πi(NR−NL−mw)τ1

∫ ∞

−∞
dx e

−πR2x2

τ2
+2πinx

× e−πτ2(2NR+2NL+m2R2−2mbR(JR−JL)−2b2R2m2−4) e2πixbR(JR+JL) (4.17)

where dstate represents the degeneracy and

NR,L =

∞
∑

r=1

r(N+
r +N−

r )R,L , JR,L = ∓
(

lR,L +
1

2

)

+

∞
∑

r=1

(N+
r −N−

r )R,L

Next, integrate over x and get

Z =
c1
R

∑

states

dstate

∫

F

d2τ

τ
25/2
2

e2πi(NR−NL−mw)τ1 e−πτ2M2
(4.18)

where

M2 = 2NR + 2NL +m2R2 +

(

n

R
+ b(JR + JL)

)2

− 2mbR(JR − JL)− 2b2R2m2 − 4 (4.19)

This of course reproduces the mass spectrum found in [3]. The last two terms −2b2R2m2−4

imply the presence of the usual bosonic string tachyon. To avoid this problem, one can

start with the superstring partition function [4]

Zsusy = c

∫

F

d2τ

τ5
2

∑

(w′,w)6=(0,0)

exp

(

− πR2

τ2
|w′ − τw|2

)

∣

∣f(e2iπτ )
∣

∣

−12

×
∣

∣ sin(πχ/2)
∣

∣

8

∣

∣ sin(πχ)
∣

∣

2

∞
∏

n=1

∣

∣(1 − e2πi(nτ+ χ

2
))(1 − e2πi(nτ−χ

2
))
∣

∣

8

∣

∣(1 − e2πi(nτ+χ))(1 − e2πi(nτ−χ))
∣

∣

2 (4.20)

with χ defined in (4.2). Proceeding in the same way, one finds a similar formula as (4.18),

with a different degeneracy dsusy
state, and with

M2
susy = 2NR + 2NL +m2R2 +

(

n

R
+ b(ĴR + ĴL)

)2

− 2mbR(ĴR − ĴL) (4.21)

Now the spectrum is tachyon free below some critical value of the magnetic field [4, 15] and

the angular momentum operators ĴR, ĴL take both integer and half-integer values (while

NR, NL = 0, 1, 2, . . .).

The problem is how to implement analytic continuation to the electric field model in

Lorentzian space. This seems to require b→ iE and JR + JL → i(JR + JL), since the total

angular momentum is the variable conjugate to ϕ and ϕ→ −it. From section 4.1, we know

that this is the case for the zero mode part where l → iω. It should be the case that the

spectra of ĴR + ĴL and ĴR − ĴL operators contain continuous and discrete parts related to

Rindler energies and radial modes.

One could attempt to directly quantize strings in the Lorentzian electric field config-

uration. This also involves a number of subtle issues (see [7–9] for discussions). In the
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magnetic model, the zero modes satisfy the algebra of creation and annihilation operators.

There is an obvious definition of Fock space and a physical string spectrum which is easily

understood: the magnetic field only introduces corrections to the mass of each string state

of given quantum numbers [4]. In the electric field configuration, the zero modes satisfy

a Heisenberg algebra and it is not clear how the Fock space should be defined in order to

reproduce the rates found in the previous sections.

Alternatively, one may attempt to directly compute the Euclidean path integral using

the conformal σ-model associated with the background (1.4), i.e. the Euclidean version of

the E-model (1.4). This leads to the partition function (4.1) or (4.20) with the change

b → iE. This partition function with b → iE, and without any additional change, does

not appear to be the proper starting point to obtain the pair production rate. Such

partition function (which appeared in the literature in the context of cosmological Milne

universes in [7–9]), presents a number of features which are not well understood. It has an

infinite number of poles in the interior of the fundamental domain that lead to logarithmic

divergences. These poles can be more conveniently visualized on the strip |τ1| ≤ 1
2 , τ2 > 0

by unfolding the fundamental domain: the pair (w′,m) can be written as (w′,m) = k(p, q)

where k is an integer and p, q are relatively primes. Then, by a modular transformation,

one can set p or q to zero and the sum over (p, q) can be traded by a sum over copies

of the fundamental domain, finally obtaining a total integration region given by the strip

|τ1| ≤ 1
2 , τ2 > 0. A similar situation arose for the first time in a different context [17]:

strings propagating in thermal AdS3 backgrounds (or H3/Z), representing the Euclidean

BTZ black hole. Indeed, the partition function of [17] is very similar to the bosonic string

partition function (4.1). In that case, the divergences were interpreted as an infinite volume

factor due to the fact that the long strings of AdS3 feel a flat potential and can move to any

radial position. For our present problem of strings in the space (1.4), it is not clear how

the partition function (4.1) with b→ iE could capture the Lorentzian physics, since in the

Euclidean approach the time variable is treated as an angle and the conjugate quantum

numbers (such as lL,R, SL,R) are discrete, while, as discussed above, a continuous part is

expected. Clearly, it would be interesting to obtain a closed formula for the pair creation

rate for the complete string theory spectrum.
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